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CONJUGACY CLASSES IN FINITE GROUPS 

BY 

AVINOAM MANN 

ABSTRACT 

In the first part of this note, we give new proofs of known results regarding the 
class number of finite groups, adding a few related results. In the second part, 
we improve a result of Ito concerning a special class of p-groups. 

1. Let G be a finite group having g elements and r = r(G) conjugacy classes. 

Then the number of (ordered) commuting pairs of elements of G is gr [2]. 

Therefore  the number of non-commuting pairs is g 2  gr. 
For a group H, let ~2(H) be the number of pairs, a ,b  E H ,  such that 

H = (a, b). Counting pairs by the subgroups they generate, we get 

(1) g2 - gr = ~ q~2(H) (H is a non-abelian subgroup of G).  

From here to the end of Section 1, let G be a p-group. If H is a non-abelian 

2-generator subgroup of G, then H/O(H) is of order  p2 and has (p2_ 1)(/92 _ p)  

pairs of generators, so ~02(H)= (p2_ 1)(p2_ p)~O(H)12. Substituting this in (1), 

we find g2 ~ gr((p2_ 1)(p - 1)), hence 

(2) g --- r((p 2 -  1)(p - 1)). 

The congruence (2) is the main step in proving the following result of P. Hall 

[4, V.15.2]. 

Let G be a group of order p2,+,, e = 0 or 1, then for some non-negative 

integer k : 

(3) r = p" + (pC- 1)(n + k (p - 1)). 

To prove (3), one notes first that 
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p~,+, =pC + ( p 2 , _  1)p" = p "  + ( p 2 - 1 ) ( p 2 " - 2 + . . . + p 2 + 1 ) ( p ' - 1 + 1 )  

- p ' + ( p ~ - l ) ( p 2 " - 2 + . . . + p 2 + l ) - p e + ( p 2 - 1 ) n  ( (p2-  1)(p - 1)). 

Thus (2) implies (3) with k an integer. To show that k _-> 0 we first check that 

k = 0 for g = p. Next, for g > p, let N be a minimal normal subgroup of G. Then 

each class of G maps onto a class of G/N,  so r(G)>= r(G/N).  Writing formula 

(3) for G and for G/N, we see that if k ( G ) <  k(G/N) ,  then r ( G ) <  r(G/N).  
Hence k(G)  >= k (G/N) ,  so k(G)  >-_ 0 by induction. 

Our proof of (2) is a simplification of one by Poland [7]. We present now a 

different proof, which was suggested in [10]. We first prove: 

Let X be a non-principal irreducible character of G. The number of algebraic 

conjugates of X is divisible by p -  1. 

Indeed, we may assume that X is faithful. Let z be a central element of order p 

in G. Then X ( z ) = x ( 1 ) e ,  for some primitive p-root  of unity e. For each 

0 < i < p, the number of algebraic conjugates ~ of X such that X ( z ) =  r  is 

independent of i, hence our claim (this is also proved in the course of proving (3) 

in [4, V.15]). 

Now write 

(4) g = x(1)  
1 

summing over all irreducible characters of G. If X ( #  1~) has t = ( p - 1 ) s  

conjugates, the contribution of these conjugates is (p - 1)sx(1) 2 = (p - 1)sp TM =- 

( p -  1)s((p 2 -  1 ) ( p -  1)) so summing in (4) by families of conjugate characters 
yields (2). 

The equality (1) can yield more information. Let n3 be the number 
of non-abelian subgroups of order p3 of G. Each of those contributes 

(p2_ 1 ) ( p - 1 ) p  3 to the right hand side of (1). For the other terms in (1), 

I~(H)I  ____p2 and pSlr ). If g __>pS, we divide (1) by p3 and get: 

The number of non-abelian subgroups of order p 3 of a p-group of order >= p 5 is 
divisible by p2. 

The number of all subgroups of order p3 is generally - 1 + p(p:)  [4, III, 8.8] 

so, by subtracting: 

The number of abelian subgroups of order p 3 of a non-cyclic p-group of order at 
least pS, p odd, is congruent to p + l (modp2).  

(The fact that this number  is ----l(p) was established in [6].) 
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Next, let n, be the number of non-abelian 2-generator subgroups of G of 

order p ' .  For these subgroups ~02(H) = (p2_ 1)(/9 - 1)p 5, while for subgroups of 

higher order, p7 I~oz(H). Dividing again (1) by p3, we now see that, provided 

g => p7, the number n3 + p2n4 is divisible by p ' .  Generally, let nk be the number 

of non-abelian 2-generator subgroups of G, of order p ~, then the same method 

yields: 

I f  g >- p~k-~, then n3 + p2n4 + " �9 + p2k-6nk is divisible by p2k-4. 

Finally, we derive a relative version of (2). Thus, let N <J G, and let N contain 

exactly s classes of G. Let n = INI, and denote by ~02.N(H), for H _C G, the 

number of pairs of generators a, b of H with a E N. Then, analogously to (1), we 

have 

(5) gn - gs = Y~ ~o2, N (H)  ( H  a non-abelian subgroup of G).  

Let N , = N n H .  If H = N , ,  then q~z.N(H)=q~e(H). If N,_Cqb(H), then 

q~2.N(H) = 0. Finally, if H E  N1 ~Z ~ ( H ) ,  then 

[H: N~(H)I = IN: N1 n ~(H)I = p  

and we are interested in pairs (a, b) with a ~ N~ - N~ fq ~ ( H ) ,  b E H - N ~ ( H ) ,  

the number of such pairs being 

~o2.N(H) = (I N,  [ - [ NI n @ ( n ) l ) (  l n [ - I N ~ ( H ) [ )  

= (p - 1)21 N, n ~ ( n , ) [  INI~(H)[ (  = (p - l y I N I I  I ~ ( n ) l ) .  

Substituting these values in (5) yields 

(6) n -= s ((p - 1)2). 

2. We now pass to arbitrary finite groups. Recall P. Hall's definition of the 

M6bius function i z o ( H )  [1]. This is 

(7) t z~ (G)=  1, ~ ~ o ( K ) = 0  
K ~ H  

( H  a proper subgroup of G).  

Hall shows in [1] that if f ( H )  is a function defined on the subgroups of G, then 

letting 

(8) g(n)= ~ f(K) 
KCT.H 

one has 
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(9) f(H)= ~ tzn(K)g(K) 
K ~ H  

and in particular 

(10) ~(H)= ~ I~.(K)[K[ ~, 
K ~ H  

(11) ~ ~ n ( K ) I K [  = 0 ( H  non-cyclic). 
K ~ H  

The last equation expresses the fact that H has no one-element generating sets. 

Adding (10), (11) and the second equation in (7), we see that for a non-cyclic 

H, and arbitrary numbers a, b 

(12) r  ~'~ I~,(K)([KI2 + aIKl+ b). 
K ~ H  

Therefore, if (d, g) = 1, and d II K r + a JKl+ b for all K C_ H, then (1) shows 

that g --- r(d). Let p l , ' "  ",pu be the primes dividing g. Since 

k l -  1 = k ( l -  1)+ k - 1 

we see that if d i p , - 1  for all i, then d l l K l - 1  for all K, and d 2 1 ( I K l - 1 )  2. 
Similarly, if d l p ~ - 1  for all i, d l lKI  2-  1. Hence 

(13) g =- r (modulo the gcd of (pZ _ 1), and also modulo the gcd of (p, - 1)2). 

These congruences are proved in [2] and [7], respectively. In [2] Hirsch also 

proves that, for odd g, g - r (mod2 gcd (p~-  1)). A different proof was given by 
van der Waall [10]. 

To get a relative version of (13), we first point out that, the notation being as in 

(5) and (6), 

(14) E ~z,N(K)=INf3HIIHI 
K~I-1 

and that, if H is not a cyclic subgroup of N, 

(15) ~ /~n(K)[KNN[=0, 
K ~ H  

so for such H 

~,~(H)= E tz.(K)(IKIIKNNI+aIK[+bIKNN[+c), 
KCH 

(16) n - s (modulo the gcd of (p, - 1)2). 
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Let p l , ' " , pv  be those primes dividing n, let d = g c d ( p l - 1 , . . . , p , - 1 ) ,  

e = gcd(p, - 1 , . . . ,  p~ - 1), and let f be the part of e that is prime to g. Then (16) 

can be improved slightly to 

(17) n = s (dr). 

We note one final formula. Denote  

~k2(H) = {number of commuting pairs of elements generating H}, 

then EHzo ~k2(H) = gr, the total number  of commuting pairs. For G non-abelian, 

r = 0, so by (9) 

(18) I f G  isnon-abelian: ~ Ixo(H)IHIr(H)=O. 
H ~ G  

This relation can be regarded as a recurrence formula for r(G). 

3, In [5] Ito defines an F-group to be a group in which Co(a) C_ Co(b) only if 

b E Z ( G )  or C o ( a ) =  Co(b). A special class of F-groups are (n, 1)-groups, 

which are the groups in which each class has size 1 or n. The F-groups which are 

not p-groups have been determined by Rebmann [8]. Let G be an F-group 

which is a p-group. Then Ito proves the existence of a normal abelian subgroup 

A, such that G / A  has exponent p. Here  we show 

THEOREM. Let G be a p-group and an F-group. Then either G has an abelian 

maximal group, or G / Z ( G )  has exponent p. 

PROOF. We take G to be non-abelian. For  each a E G - Z ( G ) ,  let Z(a)  = 
Z(Co(a)). Then, by [8, 4.1], the subgroups Z(a ) /Z  form a partition of G / Z  
(Z = Z(G)).  Assume that G / Z  has exponent  greater than p. By [5], all elements 

of order  greater than p in G / Z  belong to the same component ,  Z ( u ) / Z  say, of 

the partition, and Z(u ) /Z  is the unique normal component  of the partition. 

Suppose that Z ( u ) ~  C(u). Pick a z E Z ( u )  and a E C ( u ) -  Z (u )  such that z 

has order  greater than p in G/Z. Since a, a z ~ Z ( u )  we have aP,(az~ ' E Z ,  

hence z ~ E Z, a contradiction. Thus Z ( u ) =  C(u) is abelian. Since Z(u)<J G, 

there exists an a E Z ( u ) such that a ~ Z2( G ) - Z ( G ). Then C ( u ) = C ( a ) 3_ G ', 

so G/C(u)  is abelian and G is metabelian. But then, C(u) containing all 

elements of order  greater than p in G/Z, [3] implies I G :  C ( u ) l  = p, and C(u) is 

an abelian maximal subgroup. 

A special class of F-groups, those in which all proper  centralizers are abelian, 

is discussed by Rocke [9]. Our result implies theorem 3.13 (b) of that paper. 
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Now let G be an (n, 1)-group. Let  [ G [ = p m, I Z [ = P z, n = p' .  Then  the class 

number  of G is 

P'~ - +pro- ,  _pZ-, .  r = p Z +  p P Z = p  z 

Subst i tute  this value in (2). Thus  

p -  _ p Z + p , - ,  _ p z-, ( (p2_  1)(p - 1)), 

(19) p , - , (pm- ,  _ 1)(p' - 1) = 0 ( (p2_  1)(p - 1)), 

(pm-,  _ 1)(p' - 1) - 0 ((17 2 - 1)(/9 - 1)). 

But  p2~§ 1 = (p2k _ 1)p + p  - 1 -=(p - 1) ( p2_  1), so if both  m - z and t are 

odd,  the lef t -hand side of (19) is - (p - 1) 2 ~ 0 (p2_  1), hence  

Either m - z or t is even. 

Adde d  in proof, April 1978. The  congruence  (13) can be  general ized,  to 

include also Hirsch 's  result  for  odd  groups,  as well as (2). Namely  

THEOREM. Let pl, " " ' ,  p~ be the primes dividing the order g of the group G. Let 

d = g c d ( p l -  1 , . - . , p u  - 1), 8 = g c d ( p ~ -  1 , - . . , p ~ -  1). Then 

(20) g - r (mod dS). 

PROOF. Let  g = p ;  . . . .  p.% Let  k, have order  d(m/~dp~'), then k, has o rde r  d 

also (modpi ) .  The re  exists a n u m b e r  k, unique ( m o d g ) ,  such that k---- 

k, (modp~') for  all i. Then  k has o rder  d exactly modulo  any divisor ( ~  1) of g. 

The  map a -o  a k of G induces a pe rmuta t ion  on the conjugacy classes of G. If a 

and a k" are conjugate ,  by b ~ G say, then b induces on (a )  an au tomorph i sm of 

o rde r  dividing d. But  (d, g)  = 1, so that b central izes (a) ,  a = a k', so that k"  -= 1 

(I a I) and n is a multiple of d. Thus  each orbit  of this pe rmuta t ion  of classes has 

length d (except for  the orbit  consisting of the identi ty e lement) .  Let  X,," " ", Xu 

be the irreducible characters  of G. Then  X "-~X <k~, where  Xtk~(a)= x ( a  k) is a 

permuta t ion  of the characters .  By Brauer ' s  lemma (e.g. [11, (12.1)]) this 

permuta t ion  has the same number  of orbits  as the previous  one  on classes. 

Moereove r ,  one  of these orbits has length 1 (the principal character)  and the 

others '  length is _-< d. Hence  they all have  length d exactly. Thus  the non- 

principal characters  can be g rouped  in families, each family containing d 

characters  of the same degree.  If this common  degree  is m, then this family 

contr ibutes  to the right hand  side of (4) 
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d m  2 = d (mod dS). 

Summing in (4) by families, we get our result. 

REMARK. This argument is a generalization of Burnside's [12, pp. 294/5]. It 
has been pointed out in [7] that one cannot generalize further to g---- 
r (modgcd( (p , -  1)(p~- 1))). 
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